

<u>Home</u> > <u>Support</u> > <u>Datasheets</u> > <u>Accessories</u> > Mux80 AIN Expansion Board

Mux80 AIN Expansion Board Datasheet

Log in or register to post comments Mux80 AIN Expansion Board

Stock: In Stock Price: \$159.00

Click here to order!

Mux80 Overview

The Mux80 AIN Expansion Board serves to provide an additional 80 analog inputs to any compatible LabJack. It uses 10 multiplexer chips connected to AIN4-AIN13 and splits each channel into 8 additional channels. When a specific extended


analog input channel is read on a U6, UE9, or T7, the digital output MIO lines are automatically set and the correct analog channel is read. The Mux80 has a built-in DC-DC converter which provides the upper and lower rail voltages necessary for powering the multiplexer chips.

Three vertical DB37 connectors provide an easy interface to connect 24 AIN channels each. The remaining connector brings out unused connections (FIO, DAC, etc) from the LabJack, along with the last 8 AIN channels. There are a total of 84 available analog inputs when used in conjunction with a U6, UE9, or T7.

For screw-terminal access, connect a CB37 Terminal Board and reference the chart printed at the top of the Mux80 for connections.

Features

- 80 Multiplexed Channels (or 40 Differential Pairs)
- Built-In DC-DC Converter
- · OEM Capability
- Easy-To-Use High Density Connectors
- Snaptrack/DIN-rail compatible, with TE Connectivity P/N TKAD

Connection Options

The Mux80 can be connected several ways. The images below demonstrate use with the <u>CB37 Terminal Board</u>, and several <u>3ft DB37 Cables</u>.

When connected to a CB37, there is a quick way to determine which screw terminals can be used as analog inputs; reference

the chart printed on the top of the Mux80, also shown below for reference.

Table 1. CB37 to MUX80 connection chart

CB37 Labels	X2	Х3	X4	X5
AIN0-13	AIN0-3, AIN120-	AIN48-	AIN72-	AIN96-
AINU-13	127	61	85	109
DAC0-1	DAC0-1	AIN62-	AIN86-	AIN110-
DACU-1	DACU-1	63	87	111
FIO0-7	FIO0-7	AIN64-	AIN88-	AIN112-
FIOU-7	F100-7	71	95	119
PIN2,20	PIN2,20	N/C	N/C	N/C
MIO0-2	MIO0-2	N/C	N/C	N/C

The above table defines the pinouts of X2-X5 in terms of a CB37. If not using a CB37 see the <u>CB37 Datasheet</u> to translate the CB37 terminals to DB37 pin numbers.

Connector X2 is essentially a duplicate of the DB37 connector on the main device, except AIN4-AIN11 are instead AIN120-AIN127, and AIN12-AIN13 are not connected to anything. On connector X2, AIN0-AIN3 are duplicates of the main device, as well as FIO, DAC, etc.

AINO-AIN3 are available on the built-in terminals of the T7 and also on AINO-AIN3 of a CB37 connected to X2.

AIN120-AIN127 are available on X2, along with the DACs and DIO.

AIN48-AIN71 appear on the AIN0 through FIO7 terminals of a CB37 connected to X3. Note that terminals labeled DACx and FIOX on the CB37 are used as analog inputs.

AIN72-AIN95 appear on the AIN0 through FIO7 terminals of a CB37 connected to X4. Note that terminals labeled DACx and FIOx on the CB37 are used as analog inputs.

AIN96-AIN119 appear on the AIN0 through FIO7 terminals of a CB37 connected to X5. Note that terminals labeled DACx and FIOX on the CB37 are used as analog inputs.

Example: A signal is connected to FIO6 on a CB37. The CB37 is connected to X4 on the Mux80, so on the chart, under X4 and FIO0-7, locate AIN88-95. So the signal is connected to AIN94. To read AIN94 simply perform a standard AIN read for analog input number 94.

Using Differential Analog Inputs with the MUX80

Built-in

The built-in analog inputs AIN0 through AIN3 can be used normally when using the Mux80 (but AIN4 through AIN13 are not available). This allows:

- Positive channel = AIN0 paired with negative channel = AIN1
- Positive channel = AIN2 paired with negative channel = AIN3

See <u>14.0 AIN</u> of the T-Series Datasheet for more details on built-in AIN.

Extended range

For extended channels, the positive channel can be any channel (even or odd) listed under the "P Channel" heading in the chart below. The negative channel number is the positive channel number plus 8 (listed under the "N Channel" heading in the chart below).

Example 1: The positive channel is connected to AIN102 (AIN6 on the CB37 connected to X5). The corresponding negative

channel is AIN110 (DAC0 on the CB37 connected to X5).

Example 2: The positive channel is connected to AIN64 (FIO0 on the CB37 connected to X3). The corresponding negative channel is AIN72 (AIN0 on the CB37 connected to X4).

Note that for some differential pairs, the positive and negative are located on different connectors.

Table 2. Channel numbers for analog inputs based on block and connector

Differential Blocks	P Channel	N Channel	Connector
Block 1	AIN48-55	AIN56-63	X3
Block 2	AIN64-71	AIN72-79	X3 & X4
Block 3	AIN80-87	AIN88-95	X4
Block 4	AIN96-103	AIN104- 111	X5
Block 5	AIN112- 119	AIN120- 127	X5 & X2

See 14.2 Extended Channels of the T-Series Datasheet for more details on extended ranges.

Specifications

Parameter	Conditions	Min	Typical	Max	Units
Typical Current Draw	No Active Readings	4.5	5.5	10	mA
V_{MUX+}		12.8	13.8	16	٧
V _{MUX} -		- 12.8	-13.8	-16	V
Crosstall @ 100	DG408DVZ		-125		dB
Crosstalk @ 100 Hz	LabJack U6		-104		dB
112	Mux80		-100		dB

Ground Offsets

A single-ended analog input measurement is the voltage difference between the analog input and ground at the A/D chip on the main device (e.g. U6 or T7). If the voltage provided by a given signal is different than the voltage at the A/D chip, that results in error.

Suppose, for example, a thermocouple is connected to AINo and the adjacent GND terminal on a CB37, that is connected to X3 on a Mux80 via a 3 foot cable, and that is connected to a T7. Suppose the remote end of thermocouple is at a temperature such that it is creating a voltage difference of 1600 μ V between the AINo and GND terminals on the CB37. Typically, the voltage at the CB37-AINO terminal will be the same voltage presented to the A/D chip, but the voltage at the CB37-GND terminal might be 280 μ V higher than ground at the A/D chip due to other currents flowing on ground. That means the A/D chip will see 1880 μ V rather than 1600 μ V, which is an error of roughly 7 degrees C.

Voltage drop on the AIN connection is not a concern as the only current on the AIN connection is the bias current. The typical AIN bias current of the U6 or T7 is 20 nA, so even if the path from terminal to A/D chip had a high resistance of 10 ohms that would only be 200 nV of error.

Voltage drop on the ground connection can sometimes be a concern and is called ground offset error. Just the normal power supply current of the Mux80 and CB37 can cause GND terminals on the CB37 to be 100s of microvolts higher than ground back at the A/D chip. Any current sunk to GND by user connections will increase this difference.

One solution is to use the AGND terminal on the CB37. AGND has its own dedicated path back to the main device, so as long as the user does not sink any current into AGND it will be at the same voltage as ground at the A/D chip.

To measure how much offset exists from a particular GND terminal to ground at the A/D chip, simply jumper the GND terminal in question to an unused AIN terminal and measure the single-ended voltage from that AIN channel.

Suggestions & Solutions:

- A. Use differential analog inputs. Differential readings take the difference between 2 AIN lines and thus are not affected by ground offset. For example with a thermocouple, connect thermocouple+ to a positive channel (AIN48 for example) and connect thermocouple- to a negative channel (AIN56 for example). A resistor (100k would be typical e.g. <u>CF14JT100K</u>) from the negative channel to GND is also required, as the thermocouple cannot be totally floating (see the <u>Differential Readings App Note</u>). Now configure and read AIN48 as differential.
- B. Use AGND for all passive sensors such as thermocouples. Make sure not to connect anything to AGND that will sink/source any substantial current to AGND or offset will be created from AGND versus A/D chip ground.
- C. Use an extra AIN channel on the CB37 in question and jumper it to GND on the CB37 to measure the GND offset so it can be accounted for in software.
- D. Get rid of or at least reduce GND offset by minimizing connections (minimizing resistance) between the signal terminals and A/D chip, avoiding sourcing/sinking current to GND on the CB37, and adding a big fat wire from CB37-GND to U6-GND or T7-GND.
- E. Use a star ground, and have a single solid connection from that star ground to U6-GND or T7-GND. For example, connect the negative leads of all signals to an external grounding post or grounding bar, and run a big fat wire from there to a GND on the main LabJack.

Troubleshooting - U6 or UE9 Only

It is possible to check Mux80 functionality in <u>LJControlPanel</u> by performing the following steps:

- 1. Open LJControlPanel
- 2. Select UD device and click Test
- 3. On test pane, locate MIO 00, MIO 01, MIO 02 checkboxes for both Digital Direction and Digital State
- 4. Check the boxes for all 3 MIO lines under Digital Direction
- 5. Check desired boxes under Digital State according to the following table. Find the extended channel number to investigate, then trace across the row to the Digital State of MIO0, MIO1, and MIO2. Set the output state to high (checked) for 1 and low (un-checked) for 0.
- 6. Trace the column up to AIN#, this is the analog input that your analog signal will appear on.

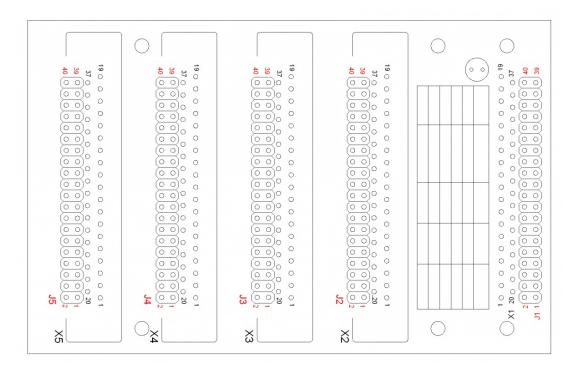
Table 3. Channel selection based on mux input

Out	tput Si	tate	Expected Channel in LJControlPanel									
MIO0	MIO1	MIO2	AIN4	AIN5	AIN6	AIN7	AIN8	AIN9	AIN10	AIN11	AIN12	AIN13
0	0	0	48	56	64	72	80	88	96	104	112	120
1	0	0	49	57	65	73	81	89	97	105	113	121
0	1	0	50	58	66	74	82	90	98	106	114	122
1	1	0	51	59	67	75	83	91	99	107	115	123
0	0	1	52	60	68	76	84	92	100	108	116	124
1	0	1	53	61	69	77	85	93	101	109	117	125
0	1	1	54	62	70	78	86	94	102	110	118	126
1	1	1	55	63	71	79	87	95	103	111	119	127

For example: I have connected an analog signal to AIN65. If I am using a CB37 Terminal Board, this will mean that the CB37 is connected to X3 on the Mux80, and the signal is wired to FIO1 on the CB37. Looking at the above chart I note that 65

shares a row with MIO Output States of 1,0,0. I then set MIO0 checked, MIO1 unchecked, and MIO2 unchecked. Next I follow the column for 65 up to AIN6, so that is the analog input where I will see my analog signal with this MIO configuration.

If there seem to be problems with incorrect readings, also check that V_{MUX+} and V_{MUX-} are within specified limits by measuring the test points with respect to GND.


Notes:

- Ensure your device has the latest <u>firmware</u>. There is a known U6 firmware issue concerning MIO lines in v1.26 and <u>older</u>. See <u>revision history</u> for more info. U6 firmware v1.40 and newer is able to stream differential channel pairs with the Mux80.
- On the U6 and U6-Pro, the digital lines CIO0-2 and MIO0-2 are shared. This means that changing the state of MIO0-2 will also change the state of CIO0-2. Therefore, anyone using a Mux80 with a U6 needs to be aware that digital lines CIO0-2 are not usable.

Appendix A - OEM Pinout Info

Log in or register to post comments

OEM Pin-out Info

J1-J5 are OEM pin-header locations, and appear immediately next to the DB37 connectors. A 40 pin (2x20) 0.1" spacing header fits the location. OEM pin-header designators are shown in red.

X1 is the Male DB37 connector which interfaces with the LabJack.

X2-X5 provide access to the 80 Mux channels, along with the FIO, DAC, VM+, VM-, and MIO lines. Please reference the spreadsheets below for exact pin locations for each J connector and X connector.

Table A1.1 OEM Pin-out for J type connector (2x20 Header .1 in) J1

1	GND	2	GND	3	PIN20 (10μA)
4	PIN2 (200μA)	5	FIO7	6	FIO6

7	FIO5	8	FIO4	9	FIO3
10	FIO2	11	FIO1	12	FIO0
13	MIO0/CIO0	14	MIO1/CIO1	15	MIO2/CIO2
16	GND	17	Vs	18	Vm-
19	Vm+	20	GND	21	DAC1
22	DAC0	23	AGND	24	AIN13
25	AIN12	26	AIN11	27	AIN10
28	AIN9	29	AIN8	30	AIN7
31	AIN6	32	AIN5	33	AIN4
34	AIN3	35	AIN2	36	AIN1
37	AIN0	38	GND	39	GND
40	GND				

Table A1.2 OEM Pin-out for J type connector (2x20 Header .1 in) J2

1	GND	2	GND	3	PIN20 (10μA)
4	PIN2 (200μA)	5	FIO7	6	FIO6
7	FIO5	8	FIO4	9	FIO3
10	FIO2	11	FIO1	12	FIO0
13	MIO0/CIO0	14	MIO1/CIO1	15	MIO2/CIO2
16	GND	17	Vs	18	Vmux-
19	Vmux+	20	GND	21	DAC1
22	DAC0	23	AGND	24	N/C
25	N/C	26	AIN127	27	AIN126
28	AIN125	29	AIN124	30	AIN123
31	AIN122	32	AIN121	33	AIN120
34	AIN3	35	AIN2	36	AIN1
37	AIN0	38	GND	39	GND
40	GND				

Table A1.3 OEM Pin-out for J type connector (2x20 Header .1 in) J3

1	GND	2	GND	3	N/C
4	N/C	5	AIN71	6	AIN70
7	AIN69	8	AIN68	9	AIN67
10	AIN66	11	AIN65	12	AIN64
13	N/C	14	N/C	15	N/C
16	GND	17	Vs	18	Vmux-
19	Vmux+	20	GND	21	AIN63
22	AIN62	23	AGND	24	AIN61
25	AIN60	26	AIN59	27	AIN58
28	AIN57	29	AIN56	30	AIN55
31	AIN54	32	AIN53	33	AIN52
34	AIN51	35	AIN50	36	AIN49
37	AIN48	38	GND	39	GND
40	GND				

Table A1.4 OEM Pin-out for J type connector (2x20 Header .1 in) J4

1	GND	2	GND	3	N/C
4	N/C	5	AIN95	6	AIN94

7 0	AIN98	8 1	AIN86	912	AIN98
13	N/C	14	N/C	15	N/C
16	GND	17	Vs	18	Vmux-
19	Vmux+	20	GND	21	AIN87
22	AIN86	23	AGND	24	AIN85
25	AIN84	26	AIN83	27	AIN82
28	AIN81	29	AIN80	30	AIN79
31	AIN78	32	AIN77	33	AIN76
34	AIN75	35	AIN74	36	AIN73
37	AIN72	38	GND	39	GND
40	GND				

Table A1.5 OEM Pin-out for J type connector (2x20 Header .1 in) J5

1	GND	2	GND	3	N/C
4	N/C	5	AIN119	6	AIN118
7	AIN117	8	AIN116	9	AIN115
10	AIN114	11	AIN113	12	AIN112
13	N/C	14	N/C	15	N/C
16	GND	17	Vs	18	Vmux-
19	Vmux+	20	GND	21	AIN111
22	AIN110	23	AGND	24	AIN109
25	AIN108	26	AIN107	27	AIN106
28	AIN105	29	AIN104	30	AIN103
31	AIN102	32	AIN101	33	AIN100
34	AIN99	35	AIN98	36	AIN97
37	AIN96	38	GND	39	GND
40	GND				

Table A2.1 OEM Pin-out for X type connectors (Dsub 37 Female) X1

1	GND	14	AIN9	27	Vs
2	PIN2 (200μA)	15	AIN7	28	Vm+
3	FIO6	16	AIN5	29	DAC1
4	FIO4	17	AIN3	30	AGND
5	FIO2	18	AIN1	31	AIN12
6	FIO0	19	GND	32	AIN10
7	MIO1/CIO1	20	PIN20 (10μA)	33	AIN8
8	GND	21	FIO7	34	AIN6
9	Vm-	22	FIO5	35	AIN4
10	GND	23	FIO3	36	AIN2
11	DAC0	24	FIO1	37	AIN0
12	AIN13	25	MIO0/CIO0		
13	AIN1	26	MIO2/CIO2		

Table A2.2 OEM Pin-out for X type connectors (Dsub 37 Female) X2 (Same as CB37)

1	GND	14	AIN125	27	Vs
2	PIN2 (200μA)	15	AIN123	28	Vmux+
3	FIO6	16	AIN121	29	DAC1
4	FIO4	17	AIN3	30	AGND

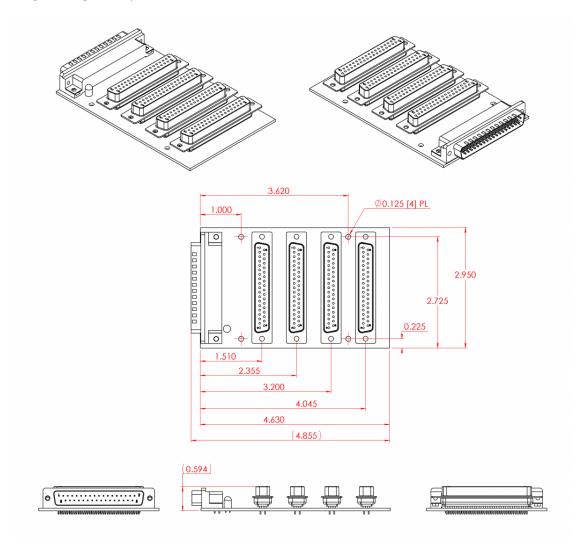
5	FIO2	18	AIN1	31	N/C
6	FIO0	19	GND	32	AIN126
7	MIO1/CIO1	20	PIN20 (10μA)	33	AIN124
8	GND	21	FIO7	34	AIN122
9	Vm-	22	FIO5	35	AIN120
10	GND	23	FIO3	36	AIN2
11	DAC0	24	FIO1	37	AIN0
12	N/C	25	MIO0/CIO0		
13	AIN127	26	MIO2/CIO2		

Table A2.3 OEM Pin-out for X type connectors (Dsub 37 Female) X3

1	GND	14	AIN57	27	Vs
2	N/C	15	AIN55	28	Vm+
3	AIN70	16	AIN53	29	AIN63
4	AIN68	17	AIN51	30	AGND
5	AIN66	18	AIN49	31	AIN60
6	AIN64	19	GND	32	AIN58
7	N/C	20	N/C	33	AIN56
8	GND	21	AIN71	34	AIN54
9	Vmux-	22	AIN69	35	AIN52
10	GND	23	AIN67	36	AIN50
11	AIN62	24	AIN65	37	AIN48
12	AIN61	25	N/C		
13	AIN59	26	N/C		

Table A2.4 OEM Pin-out for X type connectors (Dsub 37 Female) X4

1	GND	14	AIN81	27	Vs
2	N/C	15	AIN79	28	Vmux+
3	AIN94	16	AIN77	29	AIN87
4	AIN92	17	AIN75	30	AGND
5	AIN90	18	AIN73	31	AIN84
6	AIN88	19	GND	32	AIN82
7	N/C	20	N/C	33	AIN80
8	GND	21	AIN95	34	AIN78
9	Vmux-	22	AIN93	35	AIN76
10	GND	23	AIN91	36	AIN74
11	AIN86	24	AIN89	37	AIN72
12	AIN85	25	N/C		
13	AIN83	26	N/C		


Table A2.5 OEM Pin-out for X type connectors (Dsub 37 Female) X5

1	GND	14	AIN105	27	Vs
2	N/C	15	AIN103	28	Vmux+
3	AIN118	16	AIN101	29	Aln111
4	AIN116	17	AIN99	30	AGND
5	AIN114	18	AIN97	31	AIN108
6	AIN112	19	GND	32	AIN106
7	N/C	20	N/C	33	AIN104

8	GMDx-	<u>2</u> 2	A IN119	<u>3\$</u>	A IN19∂
10	GND	23	AIN115	36	AIN98
11	AIN110	24	AIN113	37	AIN96
12	AIN109	25	N/C		
13	AIN107	26	N/C		

Appendix B - Dimensions and CAD Models

Log in or register to post comments

Notes:

- 1. Mux80 standard version depicted for clarity. See CAD files below for OEM versions.
- 2. 3" Snap-Track not shown.

File Attachment:
Mux80.IGS
Mux80.STEP
SnapTrack 3in.IGS
SnapTrack_3in.STEP

STEP files.

Mux80.DXF

Appendix C - AIN Registers

Log in or register to post comments

When using the Mux80 with a Modbus compatible device, such as the T7, use the following registers to read the extended analog inputs.

Name	Start Address	Туре	Access
IN#(48:127)	96	FLOAT32	R 💿
AIN#(48:127)_RANGE	40096	FLOAT32	R/W C
IN#(48:127)_NEGATIVE_CH	41048	UINT16	R/W
AIN#(48:127)_RESOLUTION_INDEX	41548	UINT16	R/W C
AIN#(48:127)_SETTLING_US	42096	FLOAT32	R/W ©
IN_ALL_RANGE	43900	FLOAT32	R/W C
AIN_ALL_NEGATIVE_CH	43902	UINT16	R/W 🧿
AIN_ALL_RESOLUTION_INDEX	43903	UINT16	R/W ©
NIN_ALL_SETTLING_US	43904	FLOAT32	R/W ©

&print=true

For more information on multiplexing with the U6, see <u>U6 Channel Numbers</u>

For more information on multiplexing with the UE9, see <u>UE9 Channel Numbers</u>